Chapter 3

> Stoichiometry of Formulas and Equations

Mole - Mass Relationships in Chemical Systems

3.1 The Mole

3.2 Determining the Formula of an Unknown Compound
3.3 Writing and Balancing Chemical Equations
3.4 Calculating Quantities of Reactant and Product
3.5 Fundamentals of Solution Stoichiometry

The Mole

The mole (mol) is the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12.

The term "entities" refers to atoms, ions, molecules, formula units, or electrons - in fact, any type of particle.

One mole (1 mol) contains 6.022×10^{23} entities (to four significant figures).

This number is called Avogadro's number and is abbreviated as \boldsymbol{N}.

Figure 3.1 One mole (6.022×10^{23} entities) of some familiar substances.

Determining Molar Mass

The molar mass (\mathcal{M}) of a substance is the mass per mole of its entities (atoms, molecules or formula units).

For monatomic elements, the molar mass is the same as the atomic mass in grams per mole. The atomic mass is simply read from the Periodic Table.

The molar mass of $\mathrm{Ne}=20.18 \mathrm{~g} / \mathrm{mol}$.

For molecular elements and for compounds, the formula is needed to determine the molar mass.

The molar mass of $\mathrm{O}_{2}=2 \times \mathcal{M}$ of O

$$
\begin{aligned}
& =2 \times 16.00 \\
& =32.00 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

The molar mass of $\mathrm{SO}_{2}=1 \times \mathcal{M}$ of $\mathrm{S}+2 \times \mathcal{M}$ of O

$$
\begin{aligned}
& =32.00+2(16.00) \\
& =64.00 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Table 3.1 Information Contained in the Chemical Formula of Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathbb{M}=180.16 \mathrm{~g} / \mathrm{mol})$

	Carbon (C)	Hydrogen (H)	Oxygen (O)
Atoms $/$ molecule of compound	6 atoms	12 atoms	6 atoms
Moles of atoms $/ \mathrm{mole}$ of compound	6 mol of atoms	12 mol of atoms	6 mol of atoms
Atoms $/$ mole of compound	$6\left(6.022 \times 10^{23}\right)$ atoms	$12\left(6.022 \times 10^{23}\right)$ atoms	$6\left(6.022 \times 10^{23}\right)$ atoms
Mass $/$ molecule of compound	$6(12.01 \mathrm{amu})$ $=72.06 \mathrm{amu}$	$12(1.008 \mathrm{amu})$ $=12.10 \mathrm{amu}$	$6(16.00 \mathrm{amu})=$ Mass $/$ mole of compound
72.06 g	12.10 g	96.00 amu	

3-7

Converting Between Amount, Mass, and Number of Chemical Entities

No. of moles $=$ mass $(\mathrm{g}) \times \frac{1 \mathrm{~mol}}{\text { no. of grams }} \leftarrow \mathcal{M}$
No. of entities $=$ no. of moles $x \quad \frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}}$
No. of moles $=$ no. of entities $\times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { entities }}$

Figure 3.2 Mass-mole-number relationships for elements.

3-9

Sample Problem 3.1 Calculating the Mass of a Given Amount of an Element

PROBLEM: Silver (Ag) is used in jewelry and tableware but no longer in U.S. coins. How many grams of Ag are in 0.0342 mol of Ag ?

PLAN: To convert mol of Ag to mass of Ag in g we need the molar mass of Ag.

$$
\text { amount (mol) of } \mathrm{Ag}
$$

multiply by \mathcal{M} of $\mathrm{Ag}(107.9 \mathrm{~g} / \mathrm{mol})$
mass (g) of Ag

SOLUTION:

$$
0.0342 \text { molAg } \times \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{molAg}} \quad=3.69 \mathrm{~g} \mathrm{Ag}
$$

Sample Problem 3.2 Calculating the Number of Entities in a Given Amount of an Element

PROBLEM: Gallium (Ga) is a key element in solar panels, calculators, and other light-sensitive electronic devices. How many Ga atoms are in $2.85 \times 10^{-3} \mathrm{~mol}$ of gallium?

PLAN: To convert mol of Ga to number of Ga atoms we need to use Avogadro's number.

mol of Ga

multiply by 6.022×10^{23} atoms $/ \mathrm{mol}$
atoms of $\mathbf{G a}$

3-11

Sample Problem 3.2

SOLUTION:

2.85×10^{-3} molGa atoms $\times 6.022 \times 10^{23} \mathrm{Ga}$ atoms
1 molGa atoms
$=1.72 \times 10^{21} \mathrm{Ga}$ atoms

Sample Problem 3.3 Calculating the Number of Entities in a Given Mass of an Element

PROBLEM: Iron (Fe) is the main component of steel and is therefore the most important metal in society; it is also essential in the body. How many Fe atoms are in 95.8 g of Fe ?

PLAN: The number of atoms cannot be calculated directly from the mass. We must first determine the number of moles of Fe atoms in the sample and then use Avogadro's number.

```
    mass (g) of Fe
                                    divide by MM of Fe (55.85 g/mol)
amount (mol) of Fe
                                    multiply by 6.022\times1023 atoms/mol
                                    atoms of Fe
```

3-13

Sample Problem 3.3

SOLUTION:

$$
95.8 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85-\mathrm{gFe}}=1.72 \mathrm{~mol} \mathrm{Fe}
$$

1.72 molFe $\times \frac{6.022 \times 10^{23} \text { atoms } \mathrm{Fe}}{1 \mathrm{molFe}}$

$$
=1.04 \times 10^{24} \text { atoms } \mathrm{Fe}
$$

Figure 3.3 Amount-mass-number relationships for compounds.

Avogadro's
number
(molecules/mol)

```
MOLECULES (or formula units) of compound
```

3-15

Sample Problem 3.4 Calculating the Number of Chemical Entities in a Given Mass of a Compound I
PROBLEM: Nitrogen dioxide is a component of urban smog that forms from the gases in car exhausts. How many molecules are in 8.92 g of nitrogen dioxide?

PLAN: Write the formula for the compound and calculate its molar mass. Use the given mass to calculate first the number of moles and then the number of molecules.

multiply by 6.022×10^{23} formula units $/ \mathrm{mol}$
number of NO_{2} molecules

Sample Problem 3.4

SOLUTION: NO_{2} is the formula for nitrogen dioxide.

$$
\begin{aligned}
\mathscr{M} & =(1 \times \mathscr{M} \text { of N})+(2 \times \mathscr{M} \text { of } \mathrm{O}) \\
& =14.01 \mathrm{~g} / \mathrm{mol}+2(16.00 \mathrm{~g} / \mathrm{mol}) \\
& =46.01 \mathrm{~g} / \mathrm{mol}
\end{aligned} \quad \begin{aligned}
& 8.92 \mathrm{gNO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.01 \mathrm{~g} \mathrm{NO}_{2}}=0.194 \mathrm{~mol} \mathrm{NO}_{2} \\
& 0.194 \mathrm{~mol} \mathrm{NO}_{2} \times \frac{6.022 \times 10^{23} \mathrm{molecules}^{\mathrm{NO}_{2}}}{1 \mathrm{~mol} \mathrm{NO}_{2}}
\end{aligned}
$$

$$
=1.17 \times 10^{23} \text { molecules } \mathrm{NO}_{2}
$$

Sample Problem $3.5 \quad$ Calculating the Number of Chemical Entities in a Given Mass of a Compound II

PROBLEM: Ammonium carbonate, a white solid that decomposes on warming, is a component of baking powder.
a) How many formula units are in 41.6 g of ammonium carbonate?
b) How many O atoms are in this sample?

PLAN:

Write the formula for the compound and calculate its molar mass. Use the given mass to calculate first the number of moles and then the number of formula units.

The number of O atoms can be determined using the formula and the number of formula units.

Sample Problem 3.5

mass (g) of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
divide by \mathcal{M}
multiply by 6.022×10^{23} formula units $/ \mathrm{mol}$
number of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ formula units
3 O atoms per formula unit of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

number of O atoms

SOLUTION: $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is the formula for ammonium carbonate.

$$
\begin{aligned}
\mathcal{M}= & (2 \times M \text { of } \mathrm{N})+(8 \times \mathcal{M} \text { of } \mathrm{H})+(1 \times \mathcal{M} \text { of } \mathrm{C})+(3 \times \mathscr{M} \text { of } \mathrm{O}) \\
= & (2 \times 14.01 \mathrm{~g} / \mathrm{mol})+(8 \times 1.008 \mathrm{~g} / \mathrm{mol}) \\
& +(12.01 \mathrm{~g} / \mathrm{mol})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol}) \\
& =96.09 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

3-19

Sample Problem 3.5

$41.6 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=0.433 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$0.433 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{6.022 \times 10^{23} \text { formula units }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2-0}}$

$$
=2.61 \times 10^{23} \text { formula units }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

2.61×10^{23} formula units $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{3 \mathrm{O} \text { atoms }}{1 \text { fermula unit of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}$

$$
=7.83 \times 10^{23} 0 \text { atoms }
$$

The Importance of Mass Percent

```
Mass % of element X =
atoms of X in formula }x\mathrm{ atomic mass of X (amu)
    x }10
molecular (or formula) mass of compound (amu)
Mass % of element X =
    moles of X in formula x molar mass of X (g/mol)\(\times 100\)mass (g) of 1 mol of compound
```

The individual mass percents added up to 100% (within rounding)

```
3-21
```


Sample Problem 3.6 Calculating the Mass Percent of Each

 Element in a Compound from the FormulaPROBLEM: Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is a key nutrient for generating chemical potential energy in biological systems. What is the mass percent of each element in glucose?

PLAN: Find the molar mass of glucose, which is the mass of 1 mole of glucose. Find the mass of each element in 1 mole of glucose, using the molecular formula.

The mass \% for each element is calculated by dividing the mass of that element in 1 mole of glucose by the total mass of 1 mole of glucose, multiplied by 100 .

Sample Problem 3.6

PLAN:

amount (mol) of element X in 1 mol compound multiply by $\mathcal{M}(\mathrm{g} / \mathrm{mol})$ of X
mass (g) of X in 1 mol of compound
divide by mass (g) of 1 mol of compound mass fraction of X multiply by 100
mass \% X in compound

3-23

Sample Problem 3.6

SOLUTION:

In 1 mole of glucose there are $\mathbf{6}$ moles of $\mathrm{C}, \mathbf{1 2}$ moles H , and $\mathbf{6}$ moles O .

$$
\begin{aligned}
& 6 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=72.06 \mathrm{~g} \mathrm{C} \quad 12 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=12.096 \mathrm{~g} \mathrm{H} \\
& 6 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=96.00 \mathrm{~g} \mathrm{O} \quad \mathcal{M}=180.16 \mathrm{~g} / \mathrm{mol} \\
& \text { mass percent of } \mathrm{C}=\frac{72.06 \mathrm{~g} \mathrm{C}}{180.16 \mathrm{~g} \mathrm{glucose}}=0.3999 \times 100=39.99 \mathrm{mass} \% \mathrm{C} \\
& \text { mass percent of } \mathrm{H}=\frac{12.096 \mathrm{~g} \mathrm{H}}{180.16 \mathrm{~g} \mathrm{glucose}}=0.06714 \times 100=6.714 \mathrm{mass} \% \mathrm{H} \\
& \text { mass percent of } \mathrm{O}=\frac{96.00 \mathrm{~g} \mathrm{O}}{180.16 \mathrm{~g} \mathrm{glucose}}=0.5329 \times 100=53.29 \mathrm{mass} \% \mathrm{O} \\
& 3-24
\end{aligned}
$$

Determining the Mass of an Element from Its Percent

Mass percent can also be used to calculate the mass of a particular element in any mass of a compound.

Mass of element X present in sample $=$
mass of compound x
mass of element in 1 mol of compound
mass of 1 mol of compound

Sample Problem 3.7 Calculating the Mass of an Element in a Compound

PROBLEM: Use the information from Sample Problem 3.6 to determine the mass (g) of carbon in 16.55 g of glucose.

PLAN: The mass percent of carbon in glucose gives us the relative mass of carbon in 1 mole of glucose. We can use this information to find the mass of carbon in any sample of glucose.

mass of glucose sample

multiply by mass percent of \mathbf{C} in glucose
mass of C in sample

Sample Problem 3.7

SOLUTION:

Each mol of glucose contains 6 mol of C , or 72.06 g of C .
$\operatorname{Mass}(\mathrm{g})$ of $\mathrm{C}=$ mass (g) of glucose $\times \frac{6 \mathrm{~mol} \times \mathscr{M} \text { of } \mathrm{C}(\mathrm{g} / \mathrm{mol})}{\text { mass }(\mathrm{g}) \text { of } 1 \mathrm{~mol} \text { of glucose }}$
$=16.55$ g-glucose $x \frac{72.06 \mathrm{~g} \mathrm{C}}{180.16 \text { g glucose }}=6.620 \mathrm{~g} \mathrm{C}$

3-27

Empirical and Molecular Formulas

The empirical formula is the simplest formula for a compound that agrees with the elemental analysis. It shows the lowest whole number of moles and gives the relative number of atoms of each element present.

The empirical formula for hydrogen peroxide is HO .

The molecular formula shows the actual number of atoms of each element in a molecule of the compound.

The molecular formula for hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$.

Sample Problem 3.8 Determining an Empirical Formula from Amounts of Elements

PROBLEM: A sample of an unknown compound contains 0.21 mol of zinc, 0.14 mol of phosphorus, and 0.56 mol of oxygen. What is its empirical formula?

PLAN: Find the relative number of moles of each element. Divide by the lowest mol amount to find the relative mol ratios (empirical formula).

amount (mol) of each element

use \# of moles as subscripts
preliminary formula
change to integer subscripts
empirical formula

3-29

Sample Problem 3.8

SOLUTION: Using the numbers of moles of each element given, we write the preliminary formula $\mathrm{Zn}_{0.21} \mathrm{P}_{0.14} \mathrm{O}_{0.56}$

Next we divide each fraction by the smallest one; in this case 0.14 :

$$
\frac{0.21}{0.14}=1.5 \quad \frac{0.14}{0.14}=1.0 \quad \frac{0.56}{0.14}=4.0
$$

This gives $\mathrm{Zn}_{1.5} \mathrm{P}_{1.0} \mathrm{O}_{4.0}$
We convert to whole numbers by multiplying by the smallest integer that gives whole numbers; in this case 2:
$1.5 \times 2=\mathbf{3} \quad 1.0 \times 2=\mathbf{2} \quad 4.0 \times 2=8$

This gives us the empirical formula $\mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{O}_{8}$

Sample Problem 3.9 Determining an Empirical Formula from Masses of Elements

PROBLEM: Analysis of a sample of an ionic compound yields 2.82 g of $\mathrm{Na}, 4.35 \mathrm{~g}$ of Cl , and 7.83 g of O . What is the empirical formula and the name of the compound?

PLAN: Find the relative number of moles of each element. Divide by the lowest mol amount to find the relative mol ratios (empirical formula).

mass (g) of each element

divide by $\mathscr{M}(\mathrm{g} / \mathrm{mol})$
amount (mol) of each element
use \# of moles as subscripts
preliminary formula
change to integer subscripts
empirical formula
3-31

Sample Problem 3.9
SOLUTION: $2.82 \mathrm{~g} \mathrm{Na} x \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.123 \mathrm{~mol} \mathrm{Na}$

$$
4.35 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=0.123 \mathrm{~mol} \mathrm{Cl}
$$

$$
7.83 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=0.489 \mathrm{~mol} \mathrm{O}
$$

Na and $\mathrm{Cl}=\frac{0.123}{0.123}=1$ and $\mathrm{O}=\frac{0.489}{0.123}=3.98$
The empirical formula is $\mathrm{Na}_{1} \mathrm{Cl}_{1} \mathrm{O}_{3.98}$ or NaClO_{4};
this compound is named sodium perchlorate.

Molecular Formulas

The molecular formula gives the actual numbers of moles of each element present in 1 mol of compound.

The molecular formula is a whole-number multiple of the empirical formula.

$$
\frac{\text { molar mass }(\mathrm{g} / \mathrm{mol})}{\text { empirical formula mass }(\mathrm{g} / \mathrm{mol})}=\text { whole-number multiple }
$$

Sample Problem 3.10

Determining a Molecular Formula from Elemental Analysis and Molar Mass

PROBLEM: Elemental analysis of lactic acid ($\mathcal{M}=90.08 \mathrm{~g} / \mathrm{mol}$) shows it contains 40.0 mass \% C, 6.71 mass \% H , and 53.3 mass \% O. Determine the empirical formula and the molecular formula for lactic acid.

PLAN: assume 100 g lactic acid; then mass \% = mass in grams divide each mass by \mathcal{M}
amount (mol) of each element
use \# mols as subscripts; convert to integers empirical formula
divide \mathscr{M} by the molar mass for the empirical formula; multiply empirical formula by this number molecular formula

Sample Problem 3.10

SOLUTION: Assuming there are 100. g of lactic acid;

$$
\begin{array}{ccc}
40.0 \mathrm{~g} G \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{gG}} & 6.71 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}} & 53.3 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}-} \\
=3.33 \mathrm{~mol} \mathrm{C} & =6.66 \mathrm{~mol} \mathrm{H} & =3.33 \mathrm{~mol} \mathrm{O}
\end{array}
$$

3-35

Figure 3.4 Combustion apparatus for determining formulas of organic compounds.

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}+\left(\mathrm{n}+\frac{\mathrm{m}}{4}\right) \mathrm{O}_{2}=\mathrm{nCO}(\mathrm{~g})+\frac{\mathrm{m}}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Sample Problem 3.11 Determining a Molecular Formula from

 Combustion Analysis
PROBLEM:

When a 1.000 g sample of vitamin $\mathrm{C}(\mathcal{M}=176.12 \mathrm{~g} / \mathrm{mol})$ is placed in a combustion chamber and burned, the following data are obtained:
mass of CO_{2} absorber after combustion $=85.35 \mathrm{~g}$ mass of CO_{2} absorber before combustion $=83.85 \mathrm{~g}$ mass of $\mathrm{H}_{2} \mathrm{O}$ absorber after combustion $=37.96 \mathrm{~g}$ mass of $\mathrm{H}_{2} \mathrm{O}$ absorber before combustion $=37.55 \mathrm{~g}$

What is the molecular formula of vitamin C ?
PLAN: The masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ produced will give us the masses of C and H present in the original sample. From this we can determine the mass of O.

Sample Problem 3.11

(mass after combustion - mass before) for each absorber = mass of compound in each absorber
mass of each compound x mass $\%$ of oxidized element
mass of each oxidized element
mass of vitamin $\mathrm{C}-$ (mass of $\mathrm{C}+\mathrm{H}$)
mass of 0
divide each mass by \mathcal{M}
mol of C, H, and O
use \# mols as subscripts; convert to integers

| empirical
 formula |
| :---: |\rightarrow| molecular |
| :---: |
| formula |

Sample Problem 3.11

SOLUTION: For $\mathrm{CO}_{2}: 85.35 \mathrm{~g}-83.85 \mathrm{~g}=1.50 \mathrm{~g}$

$$
1.50 \mathrm{~g} \mathrm{CO}_{2} \times \frac{12.01 \mathrm{~g} \mathrm{C}^{4}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}=0.409 \mathrm{~g} \mathrm{C}
$$

For $\mathrm{H}_{2} \mathrm{O}: 37.96 \mathrm{~g}-37.55 \mathrm{~g}=0.41 \mathrm{~g}$

$$
0.41 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{2.016 \mathrm{~g} \mathrm{H}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.046 \mathrm{~g} \mathrm{H}
$$

mass of $\mathrm{O}=$ mass of vitamin $\mathrm{C}-$ (mass of $\mathrm{C}+$ mass of H)

$$
=1.000 \mathrm{~g}-(0.409+0.046) \mathrm{g}=0.545 \mathrm{~g} \mathrm{O}
$$

Sample Problem 3.11

Convert mass to moles:
$\frac{0.409 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}}=0.0341 \mathrm{~mol} \mathrm{C} \quad \frac{0.046 \mathrm{~g} \mathrm{H}}{1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}}=0.0456 \mathrm{~mol} \mathrm{H}$

$$
\frac{0.545 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}}=0.0341 \mathrm{~mol} \mathrm{O}
$$

Divide by smallest to get the preliminary formula:

$$
\begin{gathered}
C \frac{0.0341}{0.0341}=1 \quad H \quad \frac{0.0456}{0.0341}=1.34 \quad \text { O } \frac{0.0341}{0.0341}=1 \\
C_{1} \mathrm{H}_{1.34} \mathrm{O}_{1}=\mathrm{C}_{3} \mathrm{H}_{4.01} \mathrm{O}_{3} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}
\end{gathered}
$$

Divide molar mass by mass of empirical formula:

$$
\frac{176.12 \mathrm{~g} / \mathrm{mol}}{88.06 \mathrm{~g}}=2.000 \mathrm{~mol} \longrightarrow \mathbf{C}_{6} \mathbf{H}_{8} \mathbf{O}_{6}
$$

Isomers
Table 3.2 Two Constitutional Isomers of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Property Ethanol Dimethyl Ether
$\mathcal{M}(\mathrm{g} / \mathrm{mol})$
Boiling Point
Density at $20^{\circ} \mathrm{C}$

Structural formula

Space-filling model

3-41

Writing and Balancing

 Chemical EquationsA chemical equation uses formulas to express the identities and quantities of substances involved in a physical or chemical change.

Figure 3.5
The formation of HF gas on the macroscopic and molecular levels.

Figure 3.6 A three-level view of the reaction between magnesium and oxygen.

3-43

Features of Chemical Equations

The equation must be balanced; the same number and type of each atom must appear on both sides.

Balancing a Chemical Equation

$\mathbf{2 M g}(s)+\mathrm{O}_{2}(g) \rightarrow \mathbf{2 M g O}(s)$

PROBLEM: Within the cylinders of a car's engine, the hydrocarbon octane ($\mathrm{C}_{8} \mathrm{H}_{18}$), one of many components of gasoline, mixes with oxygen from the air and burns to form carbon dioxide and water vapor. Write a balanced equation for this reaction.

PLAN:
translate the statement

SOLUTION:

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\frac{25}{2} \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \longrightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$

Molecular Scene Combustion of Octane

3-47

Sample Problem 3.13 Balancing an Equation from a Molecular Scene

PROBLEM: The following molecular scenes depict an important reaction in nitrogen chemistry. The blue spheres represent nitrogen while the red spheres represent oxygen. Write a balanced equation for this reaction.

PLAN: Determine the formulas of the reactants and products from their composition. Arrange this information in the correct equation format and balance correctly, including the states of matter.

Sample Problem 3.13

SOLUTION:

The reactant circle shows only one type of molecule, composed of 2 N and 5 O atoms. The formula is thus $\mathrm{N}_{2} \mathrm{O}_{5}$. There are 4 $\mathrm{N}_{2} \mathrm{O}_{5}$ molecules depicted.

The product circle shows two types of molecule; one has 1 N and 2 O atoms while the other has 2 O atoms. The products are NO_{2} and O_{2}. There are $8 \mathrm{NO}_{2}$ molecules and $2 \mathrm{O}_{2}$ molecules shown.

The reaction depicted is $\mathbf{4} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}} \rightarrow \mathbf{8} \mathrm{NO}_{\mathbf{2}}+\mathbf{2} \mathbf{O}_{\mathbf{2}}$.
Writing the equation with the smallest whole-number coefficients and states of matter included;

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

3-49

Stoichiometric Calculations

- The coefficients in a balanced chemical equation
- represent the relative number of reactant and product particles
- and the relative number of moles of each.
- Since moles are related to mass
- the equation can be used to calculate masses of reactants and/or products for a given reaction.
- The mole ratios from the balanced equation are used as conversion factors.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Table 3.3 Information Contained in a Balanced Equation

Viewed in Terms of	Reactants $\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g)$$\longrightarrow$Products $3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$

Molecules 1 molecule $\mathrm{C}_{3} \mathrm{H}_{8}+5$ molecules $\mathrm{O}_{2} \longrightarrow 3$ molecules $\mathrm{CO}_{2}+4$ molecules $\mathrm{H}_{2} \mathrm{O}$

Figure 3.7 Summary of amount-mass-number relationships in a chemical equation.

Sample Problem 3.14 Calculating Quantities of Reactants and Products: Amount (mol) to Amount (mol)

PROBLEM: Copper is obtained from copper(I) sulfide by roasting it in the presence of oxygen gas to form powdered copper(l) oxide and gaseous sulfur dioxide.

How many moles of oxygen are required to roast 10.0 mol of copper(I) sulfide?

PLAN: write and balance the equation

use the mole ratio as a conversion factor
moles of oxygen

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$
$10.0 \mathrm{~mol}_{\mathrm{CH}} \mathrm{S} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{molCu}_{2} \mathrm{~S}}=15.0 \mathrm{~mol} \mathrm{O}$
3-53

Sample Problem 3.15 Calculating Quantities of Reactants and Products: Amount (mol) to Mass (g)

PROBLEM: During the process of roasting copper(I) sulfide, how many grams of sulfur dioxide form when 10.0 mol of copper(I) sulfide reacts?

PLAN: Using the balanced equation from the previous problem, we again use the mole ratio as a conversion factor.

mol of copper(I) sulfide

use the mole ratio as a conversion factor mol of sulfur dioxide
multiply by \mathcal{M} of sulfur dioxide
mass of sulfur dioxide

Sample Problem 3.15

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$

$$
10.0 \mathrm{molCu}_{2} \mathrm{~S} \times \frac{2 \mathrm{molSO}_{2}}{2 \mathrm{molCu}_{2} \mathrm{~S}} \times \frac{64.07 \mathrm{~g} \mathrm{SO}_{2}}{1 \mathrm{molsO}_{2}}=641 \mathrm{~g} \mathrm{SO}_{2}
$$

3-55

Sample Problem 3.16 Calculating Quantities of Reactants and Products: Mass to Mass

PROBLEM: During the roasting of copper(I) sulfide, how many kilograms of oxygen are required to form 2.86 kg of copper(I) oxide?

PLAN: mass of copper(I) oxide (g)
divide by \mathcal{M} of copper(I) oxide
mol of copper(I) oxide
use mole ratio as conversion factor
mol of oxygen
multiply by \mathscr{M} of copper(I) oxide mass of oxygen (g)

Sample Problem 3.16

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$
$2.86 \mathrm{kgCu}_{2} \mathrm{O} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}}{143.10 \mathrm{~g} \mathrm{Gu}_{2} \mathrm{O}}=20.0 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}$
$20.0 \mathrm{molCu}_{2} \theta \times \frac{3 \mathrm{molO}_{2}}{2 \mathrm{molCu}_{2} \mathrm{O}} \times \frac{32.00 \mathrm{g-O}_{2}}{1 \mathrm{~mol}_{2}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}} \quad=0.959 \mathrm{~kg} \mathrm{O}_{2}$

3-57

Reactions in Sequence

- Reactions often occur in sequence.
- The product of one reaction becomes a reactant in the next.
- An overall reaction is written by combining the reactions;
- any substance that forms in one reaction and reacts in the next can be eliminated.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{C} \\
& \mathrm{C} \rightarrow \mathrm{~B} \\
& \mathrm{~A} \rightarrow \mathrm{~B}
\end{aligned}
$$

Limiting Reactants

- So far we have assumed that reactants are present in the correct amounts to react completely.
- In reality, one reactant may limit the amount of product that can form.
- The limiting reactant will be completely used up in the reaction.
- The reactant that is not limiting is in excess - some of this reactant will be left over.

Sample Problem 3.17 Using Molecular Depictions in a Limiting-

 Reactant ProblemPROBLEM: Chlorine trifluoride, an extremely reactive substance, is formed as a gas by the reaction of elemental chlorine and fluorine. The molecular scene shows a representative portion of the reaction mixture before the reaction starts. (Chlorine is green, and fluorine is yellow.)

(a) Find the limiting reactant.
(b) Write a reaction table for the process.
(c) Draw a representative portion of the mixture after the reaction is complete. (Hint: The ClF_{3} molecule has 1 Cl atom bonded to 3 individual F atoms).

Sample Problem 3.17

SOLUTION: The balanced equation is $\mathrm{Cl}_{2}(g)+3 \mathrm{~F}_{2}(g) \rightarrow 2 \mathrm{CIF}_{3}(g)$

There are 3 molecules of Cl_{2} and 6 molecules of F_{2} depicted:

$$
\begin{aligned}
& 3 \text { molecules } \mathrm{Cl}_{2} \times \frac{2 \text { molecules } \mathrm{CIF}_{3}}{1 \text { moleculo } \mathrm{Cl}_{2}}=6 \text { molecules } \mathrm{CIF}_{3} \\
& 6 \text { molecules } \mathrm{F}_{2} \times \frac{2 \text { molecules } \mathrm{CIF}_{3}}{3 \text { molecule } \mathrm{Cl}_{2}}=4 \text { molecules } \mathrm{ClF}_{3}
\end{aligned}
$$

Since the given amount of F_{2} can form less product, it is the limiting reactant.

Sample Problem 3.17

We use the amount of F_{2} to determine the "change" in the reaction table, since F_{2} is the limiting reactant:

Molecules	$\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathbf{+}$	$\mathbf{3 \mathrm { F } _ { 2 } (g)} \boldsymbol{\rightarrow}$	$\mathbf{2 C F}_{3}(\boldsymbol{g})$
Initial	3	6	0	
Change	-2	-6	+4	
Final	1	0	4	

The final reaction scene shows that all the F_{2} has reacted and that there is Cl_{2} left over. 4 molecules of CIF_{2} have formed:

Sample Problem 3.18

Calculating Quantities in a LimitingReactant Problem: Amount to Amount

PROBLEM: In another preparation of $\mathrm{ClF}_{3}, 0.750 \mathrm{~mol}$ of Cl_{2} reacts with 3.00 mol of F_{2}.
(a) Find the limiting reactant.
(b) Write a reaction table.

PLAN: Find the limiting reactant by calculating the amount (mol) of CIF_{3} that can be formed from each given amount of reactant. Use this information to construct a reaction table.

SOLUTION: The balanced equation is $\mathrm{Cl}_{2}(g)+3 \mathrm{~F}_{2}(g) \rightarrow 2 \mathrm{CIF}_{3}(g)$
$0.750 \mathrm{molCl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{ClF}_{3}}{1 \mathrm{molCl}_{2}}=1.50 \mathrm{~mol} \mathrm{ClF}_{3}$
$3.00 \mathrm{molF}_{\mathrm{z}} \times \frac{2 \mathrm{~mol} \mathrm{ClF}_{3}}{3 \mathrm{molF}_{\mathrm{z}}}=2.00 \mathrm{~mol} \mathrm{ClF}_{3}$
Cl_{2} is limiting, because it yields less CIF_{3}.

Sample Problem 3.18

All the Cl_{2} reacts since this is the limiting reactant. For every $1 \mathrm{Cl}_{2}$ that reacts, $3 F_{2}$ will react, so $3\left(0.750\right.$) or 2.25 moles of F_{2} reacts.

Moles	$\mathrm{Cl}_{2}(\boldsymbol{g})+$	$\mathbf{3 \mathrm { F } _ { 2 } (\boldsymbol { g })} \boldsymbol{\rightarrow}$	$\mathbf{2 C I F}_{3}(\boldsymbol{g})$
Initial	0.750	3.00	0
Change	$-\mathbf{0 . 7 5 0}$	-2.25	+1.50
Final	0	0.75	1.50

Sample Problem 3.19

Calculating Quantities in a LimitingReactant Problem: Mass to Mass

PROBLEM: A fuel mixture used in the early days of rocketry consisted of two liquids, hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and dinitrogen tetraoxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$, which ignite on contact to form nitrogen gas and water vapor.
(a) How many grams of nitrogen gas form when $1.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $2.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ are mixed?
(b) Write a reaction table for this process.

PLAN: Find the limiting reactant by calculating the amount (mol) of ClF_{3} that can be formed from each given mass of reactant. Use this information to construct a reaction table.

3-65

Sample Problem 3.19

select lower number of moles of \mathbf{N}_{2} multiply by \mathcal{M}
mass of \mathbf{N}_{2}

Sample Problem 3.19

SOLUTION: $\quad 2 \mathrm{~N}_{2} \mathrm{H}_{4}(I)+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{I}) \rightarrow 3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\begin{aligned}
\text { For } \mathrm{N}_{2} \mathrm{H}_{4}: \quad & 1.00 \times 10^{2} \mathrm{~g}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.05 \mathrm{gN}_{2} \mathrm{H}_{4}}=3.12 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4} \\
& 3.12 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{3 \mathrm{~mol} \mathrm{~N}}{2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}
\end{aligned}=4.68 \mathrm{~mol} \mathrm{~N}
$$

$$
\text { For } \mathrm{N}_{2} \mathrm{O}_{4}: 2.00 \times 10^{2} \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02-\mathrm{g} \mathrm{~N}_{2} \mathrm{O}_{4}}=2.17 \mathrm{~mol} \mathrm{~N}_{2}
$$

$$
2.17 \mathrm{~mol}_{2} \mathrm{~N}_{4} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2} \mathrm{O}_{4}}=6.51 \mathrm{~mol} \mathrm{~N}_{2}
$$

$\mathrm{N}_{2} \mathrm{H}_{4}$ is limiting and only 4.68 mol of N_{2} can be produced:

$$
4.68 \mathrm{~mol}_{2} \times \frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2}}=131 \mathrm{~g} \mathrm{~N}_{2}
$$

Sample Problem 3.19

All the $\mathrm{N}_{2} \mathrm{H}_{4}$ reacts since it is the limiting reactant. For every 2 moles of $\mathrm{N}_{2} \mathrm{H}_{4}$ that react 1 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ reacts and 3 mol of N_{2} form:

Moles	$\mathbf{2 N}_{2} \mathbf{H}_{4}(\mathbf{I})+$	$\mathbf{N}_{2} \mathbf{O}_{\mathbf{4}}(\boldsymbol{I}) \rightarrow$	$\mathbf{3 \mathbf { N } _ { 2 }}(\mathbf{g})+$	$\mathbf{4 \mathbf { H } _ { 2 } \mathbf { O } (\mathrm { g })}$
Initial	3.12	2.17	0	0
Change	$\mathbf{- 3 . 1 2}$	$-\mathbf{1 . 5 6}$	$\mathbf{+ 4 . 6 8}$	+6.24
Final	0	0.61	4.68	6.24

Reaction Yields

The theoretical yield is the amount of product calculated using the molar ratios from the balanced equation.

The actual yield is the amount of product actually obtained.

The actual yield is usually less than the theoretical yield.

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

Can expressed in moles or grams

Figure $3.8 \quad$ The effect of side reactions on the yield of the main product.

Sample Problem 3.20 Calculating Percent Yield

PROBLEM: Silicon carbide (SiC) is made by reacting sand(silicon dioxide, SiO_{2}) with powdered carbon at high temperature. Carbon monoxide is also formed. What is the percent yield if 51.4 kg of SiC is recovered from processing 100.0 kg of sand?

PLAN: write balanced equation
find mol reactant
find mol product
find g product predicted \quad percent yield

Sample Problem 3.20

SOLUTION: $\quad \mathrm{SiO}_{2}(s)+3 \mathrm{C}(s) \rightarrow \mathrm{SiC}(s)+2 \mathrm{CO}(g)$
What is the percent yield if 51.4 kg of SiC is recovered from processing 100.0 kg of sand?

$$
\begin{array}{rl}
100.0 \mathrm{~kg} \mathrm{SiO} & 2
\end{array} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{SiO}_{2}}{60.09 \mathrm{~g} \mathrm{SiO}_{2}}=1664 \mathrm{~mol} \mathrm{SiO}_{2} .
$$

Solution Stoichiometry

- Many reactions occur in solution.
- A solution consists of one or more solutes dissolved in a solvent.
- The concentration of a solution is given by the quantity of solute present in a given quantity of solution.
- Molarity (M) is often used to express concentration.

$$
\text { Molarity }=\frac{\text { moles solute }}{\text { liters of solution }} \quad M=\frac{\text { mol solute }}{L \text { soln }}
$$

Sample Problem 3.21 Calculating the Molarity of a Solution

PROBLEM: What is the molarity of an aqueous solution that contains 0.715 mol of glycine $\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}\right)$ in 495 mL ?

PLAN:

Molarity is the number of moles of solute per liter of solution.

mol of glycine	$\underline{0.715 \mathrm{~mol} \text { glycine }} \times \underline{1000 \mathrm{~mL}}$
- divide by volume	495 mb -Soln
concentration in mol/mL	= 1.44 M glycine
- $10^{3} \mathrm{~mL}=1 \mathrm{~L}$	
molarity of glycine	

3-74

Figure $3.9 \quad \begin{gathered}\text { Summary of mass-mole-number-volume } \\ \text { relationships in solution. }\end{gathered}$

3-75

Sample Problem 3.22 Calculating Mass of Solute in a Given

 Volume of SolutionPROBLEM: How many grams of solute are in 1.75 L of 0.460 M sodium monohydrogen phosphate buffer solution?

PLAN: Calculate the moles of solute using the given molarity and volume. Convert moles to mass using the molar mass of the solute.

volume of solution
multiply by \boldsymbol{M}
moles of solute
multiply by \mathscr{M}
grams of solute

SOLUTION:

grams of solute

$$
\begin{gathered}
1.75 \leftarrow \frac{0.460 \mathrm{moles}}{1 \leftarrow}=0.805 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4} \\
0.805 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4} \times \frac{141.96 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4}}=114 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}
\end{gathered}
$$

Figure 3.10 Converting a concentrated solution to a dilute solution.

© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer.

3-77

Sample Problem 3.23 Preparing a Dilute Solution from a Concentrated Solution

PROBLEM: "Isotonic saline" is a 0.15 M aqueous solution of NaCl . How would you prepare 0.80 L of isotonic saline from a 6.0 M stock solution?
PLAN: To dilute a concentrated solution, we add only solvent, so the moles of solute are the same in both solutions. The volume and molarity of the dilute solution gives us the moles of solute. Then we calculate the volume of concentrated solution that contains the same number of moles.

volume of dilute soln

multiply by M of dilute soln
moles of NaCl in dilute soln = mol NaCl in concentrated soln
divide by M of concentrated soln
L of concentrated soln

Sample Problem 3.23

$$
M_{\text {dil }} \times V_{\text {dil }}=\# \text { mol solute }=M_{\text {conc }} \times V_{\text {conc }}
$$

SOLUTION:

Using the volume and molarity for the dilute solution:

$$
0.80 \text { Lsolnx } x \frac{0.15 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{Lsolt}}=0.12 \mathrm{~mol} \mathrm{NaCl}
$$

Using the moles of solute and molarity for the concentrated solution:

$$
0.12 \text { mol NaCl } \times \frac{1 \mathrm{~L} \mathrm{soln}}{6.0 \mathrm{molNaCl}}=0.020 \mathrm{~L} \text { soln }
$$

A 0.020 L portion of the concentrated solution must be diluted to a final volume of 0.80 L .

Sample Problem 3.24

Visualizing Changes in Concentration

PROBLEM: The beaker and circle represent a unit volume of solution. Draw the solution after each of these changes:
(a) For every 1 mL of solution, 1 mL of solvent is added.
(b) One third of the volume of the solution is boiled off.

PLAN: Only the volume of the solution changes; the total number of moles of solute remains the same. Find the new volume and calculate the number of moles of solute per unit volume.

Sample Problem 3.24

SOLUTION: $\quad N_{\text {dil }} \times V_{\text {dil }}=N_{\text {conc }} \times V_{\text {conc }}$ where N is the number of particles.
(a) $\quad N_{\text {dil }}=N_{\text {conc }} \times \frac{V_{\text {conc }}}{V_{\text {dil }}}=8$ particles $\times \frac{1 \mathrm{~mL}}{2 \mathrm{~mL}}=4$ particles
(b) $N_{\text {conc }}=N_{\text {dil }} \times \frac{V_{\text {dil }}}{V_{\text {conc }}}=8$ particles $\times \frac{1 \mathrm{~mL}}{\frac{2}{3} \mathrm{~mL}}=12$ particles

(b)

3-81

Sample Problem 3.25 Calculating Quantities of Reactants and Products for a Reaction in Solution

PROBLEM: A 0.10 M HCl solution is used to simulate the acid concentration of the stomach. How many liters of "stomach acid" react with a tablet containing 0.10 g of magnesium hydroxide?
PLAN: Write a balanced equation and convert the mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ to moles. Use the mole ratio to determine the moles of HCl , then convert to volume using molarity.

Sample Problem 3.25

SOLUTION:

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l} \\
0.10 \mathrm{~g} \mathrm{Mgg}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}{58.33 \mathrm{~g} \mathrm{Mg(OH)}_{2}=1.7 \times 10^{-3} \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}} \\
=1.7 \times 10^{-3} \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}
\end{gathered} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}=3.4 \times 10^{-3} \mathrm{~mol} \mathrm{HCl},
$$

Sample Problem 3.26 Solving Limiting-Reactant Problems for Reactions in Solution

PROBLEM: In a simulation mercury removal from industrial wastewater, 0.050 L of 0.010 M mercury(II) nitrate reacts with 0.020 L of 0.10 M sodium sulfide. How many grams of mercury(II) sulfide form? Write a reaction table for this process.
PLAN: Write a balanced chemical reaction. Determine limiting reactant. Calculate the grams of mercury(II) sulfide product.

volume of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ soln
multiply by M
mol of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
mole ratio
mol of HgS

volume of $\mathrm{Na}_{2} \mathrm{~S}$ soln

multiply by M

$$
\mathrm{mol} \text { of } \mathrm{Na}_{2} \mathrm{~S}
$$

mole ratio
mol of HgS
select lower number of moles of HgS multiply by \mathcal{M}

Sample Problem 3.26

SOLUTION: $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow \mathrm{HgS}(s)+2 \mathrm{NaNO}_{3}(a q)$

$$
\begin{aligned}
& 0.050 \mathrm{LHg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{0.010 \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{LHg}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{HgS}}{1 \mathrm{molHg}\left(\mathrm{NO}_{3}\right)_{2}} \\
& =5.0 \times 10^{-4} \mathrm{~mol} \mathrm{HgS} \\
& 0.020 \mathrm{~L}^{\mathrm{L} \mathrm{Na}_{2} \mathrm{~S}} \times \frac{0.10 \mathrm{molNa}_{2} \mathrm{~S}}{1 \mathrm{LNNa}_{2} \mathrm{~S}} \times \frac{1 \mathrm{~mol} \mathrm{HgS}}{1 \mathrm{molNa}_{2} \mathrm{~S}}=2.0 \times 10^{-3} \mathrm{~mol} \mathrm{HgS}
\end{aligned}
$$

$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ is the limiting reactant because it yields less HgS .

$$
5.0 \times 10^{-4} \mathrm{moHgS} \times \frac{232.7 \mathrm{~g} \mathrm{HgS}}{1 \mathrm{molHgs}}=0.12 \mathrm{~g} \mathrm{HgS}
$$

3-85

Sample Problem 3.26

The reaction table is constructed using the amount of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ to determine the changes, since it is the limiting reactant.

Amount	$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$	$\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow$	$\mathrm{HgS}(\boldsymbol{s})+$	$2 \mathrm{NaNO}_{3}(\mathrm{aq})$
Initial	5.0×10^{-4}	2.0×10^{-3}	0	0
Change	$\mathbf{- 5 . 0 \times 1 0 ^ { - 4 }}$	-5.0×10^{-4}	$\mathbf{+ 5 . 0 \times 1 0 ^ { - 4 }}$	$\mathbf{+ 1 . 0 \times 1 0 ^ { - 3 }}$
Final	0	1.5×10^{-3}	5.0×10^{-4}	$+1.0 \times 10^{-3}$

